Online Clustering of Contextual Cascading Bandits

نویسندگان

  • Shuai Li
  • Shengyu Zhang
چکیده

We consider a new setting of online clustering of contextual cascading bandits, an online learning problem where the underlying cluster structure over users is unknown and needs to be learned from a random prefix feedback. More precisely, a learning agent recommends an ordered list of items to a user, who checks the list and stops at the first satisfactory item, if any. We propose an algorithm of CLUB-cascade for this setting and prove an n-step regret bound of order Õ( √ n). Previous work [16] corresponds to the degenerate case of only one cluster, and our general regret bound in this special case also significantly improves theirs. We conduct experiments on both synthetic and real data, and demonstrate the effectiveness of our algorithm and the advantage of incorporating online clustering method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contextual Combinatorial Cascading Bandits

We propose the contextual combinatorial cascading bandits, a combinatorial online learning game, where at each time step a learning agent is given a set of contextual information, then selects a list of items, and observes stochastic outcomes of a prefix in the selected items by some stopping criterion. In online recommendation, the stopping criterion might be the first item a user selects; in ...

متن کامل

From Ads to Interventions: Contextual Bandits in Mobile Health

The first paper on contextual bandits was written by Michael Woodroofe in 1979 [1] but the term “contextual bandits” was invented only recently in 2008 by Langford and Zhang [2]. Woodroofe’s motivating application was clinical trials whereas modern interest in this problem was driven to a great extent by problems on the internet, such as online ad and online news article placement. We have now ...

متن کامل

Online Context-Dependent Clustering in Recommendations based on Exploration-Exploitation Algorithms

We investigate two context-dependent clustering techniques for content recommendation based on exploration-exploitation strategies in contextual multiarmed bandit settings. Our algorithms dynamically group users based on the items under consideration and, possibly, group items based on the similarity of the clusterings induced over the users. The resulting algorithm thus takes advantage of pref...

متن کامل

Online Clustering of Bandits

We introduce a novel algorithmic approach to content recommendation based on adaptive clustering of exploration-exploitation (“bandit”) strategies. We provide a sharp regret analysis of this algorithm in a standard stochastic noise setting, demonstrate its scalability properties, and prove its effectiveness on a number of artificial and real-world datasets. Our experiments show a significant in...

متن کامل

Online Aggregation of Coherent Generators Based on Electrical Parameters of Synchronous Generators

This paper proposes a novel approach for coherent generators online clustering in a large power system following a wide area disturbance. An interconnected power system may become unstable due to severe contingency when it is operated close to the stability boundaries. Hence, the bulk power system controlled islanding is the last resort to prevent catastrophic cascading outages and wide area bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.08594  شماره 

صفحات  -

تاریخ انتشار 2017